blank.gif (43 bytes)

Church Of The
Swimming Elephant

Search:
3.9 Multihomed Hosts Connected: An Internet Encyclopedia
3.9 Multihomed Hosts

Up: Connected: An Internet Encyclopedia
Up: Requests For Comments
Up: RFC 2205
Up: 3. RSVP Functional Specification
Prev: 3.8 Traffic Policing and Non-Integrated Service Hops
Next: 3.10 Future Compatibility

3.9 Multihomed Hosts

3.9 Multihomed Hosts

Accommodating multihomed hosts requires some special rules in RSVP. We use the term `multihomed host' to cover both hosts (end systems) with more than one network interface and routers that are supporting local application programs.

An application executing on a multihomed host may explicitly specify which interface any given flow will use for sending and/or for receiving data packets, to override the system-specified default interface. The RSVP process must be aware of the default, and if an application sets a specific interface, it must also pass that information to RSVP.

  • Sending Data

    A sender application uses an API call (SENDER in Section 3.11.1) to declare to RSVP the characteristics of the data flow it will originate. This call may optionally include the local IP address of the sender. If it is set by the application, this parameter must be the interface address for sending the data packets; otherwise, the system default interface is implied.

    The RSVP process on the host then sends Path messages for this application out the specified interface (only).

  • Making Reservations

    A receiver application uses an API call (RESERVE in Section 3.11.1) to request a reservation from RSVP. This call may optionally include the local IP address of the receiver, i.e., the interface address for receiving data packets. In the case of multicast sessions, this is the interface on which the group has been joined. If the parameter is omitted, the system default interface is used.

    In general, the RSVP process should send Resv messages for an application out the specified interface. However, when the application is executing on a router and the session is multicast, a more complex situation arises. Suppose in this case that a receiver application joins the group on an interface Iapp that differs from Isp, the shortest-path interface to the sender. Then there are two possible ways for multicast routing to deliver data packets to the application. The RSVP process must determine which case holds by examining the path state, to decide which incoming interface to use for sending Resv messages.

    1. The multicast routing protocol may create a separate branch of the multicast distribution `tree' to deliver to Iapp. In this case, there will be path state for both interfaces Isp and Iapp. The path state on Iapp should only match a reservation from the local application; it must be marked "Local_only" by the RSVP process. If "Local_only" path state for Iapp exists, the Resv message should be sent out Iapp.

      Note that it is possible for the path state blocks for Isp and Iapp to have the same next hop, if there is an intervening non-RSVP cloud.

    2. The multicast routing protocol may forward data within the router from Isp to Iapp. In this case, Iapp will appear in the list of outgoing interfaces of the path state for Isp, and the Resv message should be sent out Isp.

    3. When Path and PathTear messages are forwarded, path state marked "Local_Only" must be ignored.


Next: 3.10 Future Compatibility

Connected: An Internet Encyclopedia
3.9 Multihomed Hosts

Cotse.Net

Protect yourself from cyberstalkers, identity thieves, and those who would snoop on you.
Stop spam from invading your inbox without losing the mail you want. We give you more control over your e-mail than any other service.
Block popups, ads, and malicious scripts while you surf the net through our anonymous proxies.
Participate in Usenet, host your web files, easily send anonymous messages, and more, much more.
All private, all encrypted, all secure, all in an easy to use service, and all for only $5.95 a month!

Service Details

 
.
www.cotse.com
Have you gone to church today?
.
All pages ©1999, 2000, 2001, 2002, 2003 Church of the Swimming Elephant unless otherwise stated
Church of the Swimming Elephant©1999, 2000, 2001, 2002, 2003 Cotse.com.
Cotse.com is a wholly owned subsidiary of Packetderm, LLC.

Packetderm, LLC
210 Park Ave #308
Worcester, MA 01609