blank.gif (43 bytes)

Church Of The
Swimming Elephant

2.5 Errors Connected: An Internet Encyclopedia
2.5 Errors

Up: Connected: An Internet Encyclopedia
Up: Requests For Comments
Up: RFC 2205
Up: 2. RSVP Protocol Mechanisms
Prev: 2.4 Teardown
Next: 2.6 Confirmation

2.5 Errors

2.5 Errors

There are two RSVP error messages, ResvErr and PathErr. PathErr messages are very simple; they are simply sent upstream to the sender that created the error, and they do not change path state in the nodes though which they pass. There are only a few possible causes of path errors.

However, there are a number of ways for a syntactically valid reservation request to fail at some node along the path. A node may also decide to preempt an established reservation. The handling of ResvErr messages is somewhat complex (Section 3.5). Since a request that fails may be the result of merging a number of requests, a reservation error must be reported to all of the responsible receivers. In addition, merging heterogeneous requests creates a potential difficulty known as the "killer reservation" problem, in which one request could deny service to another. There are actually two killer-reservation problems.

  1. The first killer reservation problem (KR-I) arises when there is already a reservation Q0 in place. If another receiver now makes a larger reservation Q1 > Q0, the result of merging Q0 and Q1 may be rejected by admission control in some upstream node. This must not deny service to Q0.

    The solution to this problem is simple: when admission control fails for a reservation request, any existing reservation is left in place.

  2. The second killer reservation problem (KR-II) is the converse: the receiver making a reservation Q1 is persistent even though Admission Control is failing for Q1 in some node. This must not prevent a different receiver from now establishing a smaller reservation Q0 that would succeed if not merged with Q1.

    To solve this problem, a ResvErr message establishes additional state, called "blockade state", in each node through which it passes. Blockade state in a node modifies the merging procedure to omit the offending flowspec (Q1 in the example) from the merge, allowing a smaller request to be forwarded and established. The Q1 reservation state is said to be "blockaded". Detailed rules are presented in Section 3.5.

A reservation request that fails Admission Control creates blockade state but is left in place in nodes downstream of the failure point. It has been suggested that these reservations downstream from the failure represent "wasted" reservations and should be timed out if not actively deleted. However, the downstream reservations are left in place, for the following reasons:

  • There are two possible reasons for a receiver persisting in a failed reservation: (1) it is polling for resource availability along the entire path, or (2) it wants to obtain the desired QoS along as much of the path as possible. Certainly in the second case, and perhaps in the first case, the receiver will want to hold onto the reservations it has made downstream from the failure.

  • If these downstream reservations were not retained, the responsiveness of RSVP to certain transient failures would be impaired. For example, suppose a route "flaps" to an alternate route that is congested, so an existing reservation suddenly fails, then quickly recovers to the original route. The blockade state in each downstream router must not remove the state or prevent its immediate refresh.

  • If we did not refresh the downstream reservations, they might time out, to be restored every Tb seconds (where Tb is the blockade state timeout interval). Such intermittent behavior might be very distressing for users.

    Next: 2.6 Confirmation

    Connected: An Internet Encyclopedia
    2.5 Errors


Protect yourself from cyberstalkers, identity thieves, and those who would snoop on you.
Stop spam from invading your inbox without losing the mail you want. We give you more control over your e-mail than any other service.
Block popups, ads, and malicious scripts while you surf the net through our anonymous proxies.
Participate in Usenet, host your web files, easily send anonymous messages, and more, much more.
All private, all encrypted, all secure, all in an easy to use service, and all for only $5.95 a month!

Service Details

Have you gone to church today?
All pages ©1999, 2000, 2001, 2002, 2003 Church of the Swimming Elephant unless otherwise stated
Church of the Swimming Elephant©1999, 2000, 2001, 2002, 2003 is a wholly owned subsidiary of Packetderm, LLC.

Packetderm, LLC
210 Park Ave #308
Worcester, MA 01609