blank.gif (43 bytes)

Church Of The
Swimming Elephant

Search:
1. Introduction Connected: An Internet Encyclopedia
1. Introduction

Up: Connected: An Internet Encyclopedia
Up: Requests For Comments
Up: RFC 1058
Prev: RFC 1058
Next: 1.1. Limitations of the protocol

1. Introduction

1. Introduction

This memo describes one protocol in a series of routing protocols based on the Bellman-Ford (or distance vector) algorithm. This algorithm has been used for routing computations in computer networks since the early days of the ARPANET. The particular packet formats and protocol described here are based on the program "routed", which is included with the Berkeley distribution of Unix. It has become a de facto standard for exchange of routing information among gateways and hosts. It is implemented for this purpose by most commercial vendors of IP gateways. Note, however, that many of these vendors have their own protocols which are used among their own gateways.

This protocol is most useful as an "interior gateway protocol". In a nationwide network such as the current Internet, it is very unlikely that a single routing protocol will used for the whole network. Rather, the network will be organized as a collection of "autonomous systems". An autonomous system will in general be administered by a single entity, or at least will have some reasonable degree of technical and administrative control. Each autonomous system will have its own routing technology. This may well be different for different autonomous systems. The routing protocol used within an autonomous system is referred to as an interior gateway protocol, or "IGP". A separate protocol is used to interface among the autonomous systems. The earliest such protocol, still used in the Internet, is "EGP" (exterior gateway protocol). Such protocols are now usually referred to as inter-AS routing protocols. RIP was designed to work with moderate-size networks using reasonably homogeneous technology. Thus it is suitable as an IGP for many campuses and for regional networks using serial lines whose speeds do not vary widely. It is not intended for use in more complex environments. For more information on the context into which RIP is expected to fit, see Braden and Postel [3].

RIP is one of a class of algorithms known as "distance vector algorithms". The earliest description of this class of algorithms known to the author is in Ford and Fulkerson [6]. Because of this, they are sometimes known as Ford-Fulkerson algorithms. The term Bellman-Ford is also used. It comes from the fact that the formulation is based on Bellman's equation, the basis of "dynamic programming". (For a standard introduction to this area, see [1].) The presentation in this document is closely based on [2]. This text contains an introduction to the mathematics of routing algorithms. It describes and justifies several variants of the algorithm presented here, as well as a number of other related algorithms. The basic algorithms described in this protocol were used in computer routing as early as 1969 in the ARPANET. However, the specific ancestry of this protocol is within the Xerox network protocols. The PUP protocols (see [4]) used the Gateway Information Protocol to exchange routing information. A somewhat updated version of this protocol was adopted for the Xerox Network Systems (XNS) architecture, with the name Routing Information Protocol. (See [7].) Berkeley's routed is largely the same as the Routing Information Protocol, with XNS addresses replaced by a more general address format capable of handling IP and other types of address, and with routing updates limited to one every 30 seconds. Because of this similarity, the term Routing Information Protocol (or just RIP) is used to refer to both the XNS protocol and the protocol used by routed.

RIP is intended for use within the IP-based Internet. The Internet is organized into a number of networks connected by gateways. The networks may be either point-to-point links or more complex networks such as Ethernet or the ARPANET. Hosts and gateways are presented with IP datagrams addressed to some host. Routing is the method by which the host or gateway decides where to send the datagram. It may be able to send the datagram directly to the destination, if that destination is on one of the networks that are directly connected to the host or gateway. However, the interesting case is when the destination is not directly reachable. In this case, the host or gateway attempts to send the datagram to a gateway that is nearer the destination. The goal of a routing protocol is very simple: It is to supply the information that is needed to do routing.


Next: 1.1. Limitations of the protocol

Connected: An Internet Encyclopedia
1. Introduction

Cotse.Net

Protect yourself from cyberstalkers, identity thieves, and those who would snoop on you.
Stop spam from invading your inbox without losing the mail you want. We give you more control over your e-mail than any other service.
Block popups, ads, and malicious scripts while you surf the net through our anonymous proxies.
Participate in Usenet, host your web files, easily send anonymous messages, and more, much more.
All private, all encrypted, all secure, all in an easy to use service, and all for only $5.95 a month!

Service Details

 
.
www.cotse.com
Have you gone to church today?
.
All pages ©1999, 2000, 2001, 2002, 2003 Church of the Swimming Elephant unless otherwise stated
Church of the Swimming Elephant©1999, 2000, 2001, 2002, 2003 Cotse.com.
Cotse.com is a wholly owned subsidiary of Packetderm, LLC.

Packetderm, LLC
210 Park Ave #308
Worcester, MA 01609