blank.gif (43 bytes)

Church Of The
Swimming Elephant

7.2. Sending the queries Connected: An Internet Encyclopedia
7.2. Sending the queries

Up: Connected: An Internet Encyclopedia
Up: Requests For Comments
Up: RFC 1035
Prev: 7.1. Transforming a user request into a query
Next: 7.3. Processing responses

7.2. Sending the queries

7.2. Sending the queries

As described in [RFC-1034], the basic task of the resolver is to formulate a query which will answer the client's request and direct that query to name servers which can provide the information. The resolver will usually only have very strong hints about which servers to ask, in the form of NS RRs, and may have to revise the query, in response to CNAMEs, or revise the set of name servers the resolver is asking, in response to delegation responses which point the resolver to name servers closer to the desired information. In addition to the information requested by the client, the resolver may have to call upon its own services to determine the address of name servers it wishes to contact.

In any case, the model used in this memo assumes that the resolver is multiplexing attention between multiple requests, some from the client, and some internally generated. Each request is represented by some state information, and the desired behavior is that the resolver transmit queries to name servers in a way that maximizes the probability that the request is answered, minimizes the time that the request takes, and avoids excessive transmissions. The key algorithm uses the state information of the request to select the next name server address to query, and also computes a timeout which will cause the next action should a response not arrive. The next action will usually be a transmission to some other server, but may be a temporary error to the client.

The resolver always starts with a list of server names to query (SLIST). This list will be all NS RRs which correspond to the nearest ancestor zone that the resolver knows about. To avoid startup problems, the resolver should have a set of default servers which it will ask should it have no current NS RRs which are appropriate. The resolver then adds to SLIST all of the known addresses for the name servers, and may start parallel requests to acquire the addresses of the servers when the resolver has the name, but no addresses, for the name servers.

To complete initialization of SLIST, the resolver attaches whatever history information it has to the each address in SLIST. This will usually consist of some sort of weighted averages for the response time of the address, and the batting average of the address (i.e., how often the address responded at all to the request). Note that this information should be kept on a per address basis, rather than on a per name server basis, because the response time and batting average of a particular server may vary considerably from address to address. Note also that this information is actually specific to a resolver address / server address pair, so a resolver with multiple addresses may wish to keep separate histories for each of its addresses. Part of this step must deal with addresses which have no such history; in this case an expected round trip time of 5-10 seconds should be the worst case, with lower estimates for the same local network, etc.

Note that whenever a delegation is followed, the resolver algorithm reinitializes SLIST.

The information establishes a partial ranking of the available name server addresses. Each time an address is chosen and the state should be altered to prevent its selection again until all other addresses have been tried. The timeout for each transmission should be 50-100% greater than the average predicted value to allow for variance in response.

Some fine points:

  • The resolver may encounter a situation where no addresses are available for any of the name servers named in SLIST, and where the servers in the list are precisely those which would normally be used to look up their own addresses. This situation typically occurs when the glue address RRs have a smaller TTL than the NS RRs marking delegation, or when the resolver caches the result of a NS search. The resolver should detect this condition and restart the search at the next ancestor zone, or alternatively at the root.

  • If a resolver gets a server error or other bizarre response from a name server, it should remove it from SLIST, and may wish to schedule an immediate transmission to the next candidate server address.

Next: 7.3. Processing responses

Connected: An Internet Encyclopedia
7.2. Sending the queries


Protect yourself from cyberstalkers, identity thieves, and those who would snoop on you.
Stop spam from invading your inbox without losing the mail you want. We give you more control over your e-mail than any other service.
Block popups, ads, and malicious scripts while you surf the net through our anonymous proxies.
Participate in Usenet, host your web files, easily send anonymous messages, and more, much more.
All private, all encrypted, all secure, all in an easy to use service, and all for only $5.95 a month!

Service Details

Have you gone to church today?
All pages ©1999, 2000, 2001, 2002, 2003 Church of the Swimming Elephant unless otherwise stated
Church of the Swimming Elephant©1999, 2000, 2001, 2002, 2003 is a wholly owned subsidiary of Packetderm, LLC.

Packetderm, LLC
210 Park Ave #308
Worcester, MA 01609